Predicting Student Preparation for Exams Using the Naive Bayes Method
Abstract
The National Examination (UN) is a government policy in the field of education to determine the quality standards of educatioN. The function of the national examination is important to measure student competence and one of the considerations for selection to a higher level. The Naive Bayes algorithm is mostly used in spam message filtering, sentiment analysis, and recommendation systems. One of the main reasons for the use of this algorithm is due to its quick and easy implementation. The test was carried out using the WEKA application, using the confusion matrix method to determine the effectiveness of classification with model equations and can be calculated to find accuracy, sensitivity, specificity, positive predictive value (ppv), and negative predictive value (npv). The results of the evaluation and validation of the confusion matrix using training data and testing data showed the accuracy rate and error rate in the Naïve Bayes algorithm of 96.8254% and 3.1746%.
References
V. Mariani, “Efektivitas Bimbingan Belajar Menghadapi Ujian Nasional Pelajaran Sosiologi SMA Muhammadiyah 2 Pontianak,” J. Pendidik. Sosiol. dan Hum., vol. 4, no. 1, 2013.
N. Iriawan and K. Fithriasari, “On the modeling of the average value of high school national examination in West Java using Bayesian hierarchical mixture normal approach,” in 2018 International Conference on Information and Communications Technology (ICOIACT), 2018, pp. 689–694.
A. Amir, “The Contribution of National Examination Score Indonesia Language in High School and Reading Strategies toward Students Reading Comprehension Skill in Universitas Negeri Padang,” in International Conference on Language, Literature, and Education (ICLLE 2018), 2018, pp. 229–233.
I. K. Wijayanti and H. Retnawati, “Analisis profil kesiapan siswa SMA dalam menghadapi ujian nasional matematika di Kabupaten Temanggung,” J. Pendidik. Mat. dan Sains, vol. 6, no. 2, pp. 179–189, 2018.
J. Harta, N. T. Rasuh, and A. Seriang, “Using HOTS-Based Chemistry National Exam Questions to Map the Analytical Abilities of Senior High School Students,” J. Sci. Learn., vol. 3, no. 3, pp. 143–148, 2020, doi: 10.17509/jsl.v3i3.22387.
N. V Obernikhina, T. S. Sanzhur, and L. V Gayova, “The Unified State Qualification Exam in Ukraine and Bogomolets National Medical University Under Covid-19 Conditions,” vol. 6, no. 1, 2021, doi: 10.19080/JOJPH.2021.06.555679.
B. M. Modi, “CONSTRUCTION AND TRYOUT OF INQUIRY TRAINING MODEL WITH REFERENCE TO UPPER PRIMARY SCIENCE TEACHING”.
F. Adiba, T. Islam, … M. K.-I., and undefined 2020, “Effect of corpora on classification of fake news using naive Bayes classifier,” Researchlakejournals.Com, vol. 1, no. 1, p. 80, 2020, [Online]. Available: https://researchlakejournals.com/index.php/AAIML/article/view/45
M. Ainurrofiq, “Implementasi Algoritma Naive Bayes Untuk Menentukan Kesiapan Siswa Dalam Menghadapi Ujian Nasional,” Skripsi Tek. Inform. Univ. Dian, 2015.
A. Wongrugsa, S. Kanjanawasee, and S. Ratchusanti, “The efficiency of an evaluation model for undergraduate vocationaeducation programs: An application of multiple evaluation approaches,” Kasetsart J. Soc. Sci., vol. 43, no. 3, pp. 769–776, 2022, doi: 10.34044/j.kjss.2022.43.3.32.
R. K. Zaman and R. Andriyanty, “Evaluation instrument development for scientific writing instruction with a constructivism approach,” Tech. Soc. Sci. J., vol. 18, no. 21, pp. 235–243, 2021, [Online]. Available: https://techniumscience.com/index.php/socialsciences/index
N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 5, 2019, doi: 10.1088/1757-899X/546/5/052068.
J. Galopo Perez and E. S. Perez, “Predicting Student Program Completion Using Naïve Bayes Classification Algorithm,” Int. J. Mod. Educ. Comput. Sci., vol. 13, no. 3, pp. 57–67, 2021, doi: 10.5815/ijmecs.2021.03.05.
A. Tripathi, S. Yadav, and R. Rajan, “Naive Bayes Classification Model for the Student Performance Prediction,” 2019 2nd Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2019, no. July 2019, pp. 1548–1553, 2019, doi: 10.1109/ICICICT46008.2019.8993237.
A. Saleh, “Implementasi metode klasifikasi naive bayes dalam memprediksi besarnya penggunaan listrik rumah tangga,” Creat. Inf. Technol. J., vol. 2, no. 3, pp. 207–217, 2015.
S. Joshi, B. Pandey, and N. Joshi, “Comparative analysis of Naive Bayes and J48 Classification Algorithms,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 5, no. 12, pp. 813–817, 2015.
Y. F. Aziiza and T. Herman, “An analysis of the cause factors of unreachable standard minimum criteria on mathematics learning,” in Journal of Physics: Conference Series, 2020, vol. 1521, no. 3, p. 32066.
A. R. Samsudin and D. E. Mascita, “The Development of Exposition Text Digital Teaching Materials for 8 th Grade Junior High School Students”.
L. D. Haeruman, V. Serevina, and Y. E. Susanti, “Development of Interactive Ludo Games on Earth and Space Science Learning Material as High School Exercise Media,” in Journal of Physics: Conference Series, 2022, vol. 2309, no. 1, p. 12091.
D. Xiong, C. He, X. Liu, and M. Liao, “An End-To-End Bayesian Segmentation Network Based on a Generative Adversarial Network for Remote Sensing Images,” Remote Sensing, vol. 12, no. 2. MDPI AG, p. 216, 2020. doi: 10.3390/rs12020216.
D. Alita, I. Sari, A. R. Isnain, and S. Styawati, “Penerapan Naïve Bayes Classifier Untuk Pendukung Keputusan Penerima Beasiswa,” J. Data Min. Dan Sist. Inf., vol. 2, no. 1, pp. 17–23, 2021.
L. Mescheder, “Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks,” 34th International Conference on Machine Learning, ICML 2017, vol. 5. pp. 3694–3707, 2017.
M. Wongkar and A. Angdresey, “Sentiment analysis using Naive Bayes Algorithm of the data crawler: Twitter,” in 2019 Fourth International Conference on Informatics and Computing (ICIC), 2019, pp. 1–5.
A. Kesumawati and D. T. Utari, “Predicting patterns of student graduation rates using Naïve bayes classifier and support vector machine,” in AIP conference proceedings, 2018, vol. 2021, no. 1, p. 60005.
E. Said Mohamed, A. A. Belal, S. Kotb Abd-Elmabod, M. A. El-Shirbeny, A. Gad, and M. B. Zahran, “Smart farming for improving agricultural management,” Egypt. J. Remote Sens. Sp. Sci., 2021, doi: https://doi.org/10.1016/j.ejrs.2021.08.007.
Y. G. Shawai and M. A. Almaiah, “Malay language mobile learning system (MLMLS) using NFC technology,” Int. J. Educ. Manag. Eng., vol. 8, no. 2, p. 1, 2018.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.
F.-J. Yang, “An implementation of naive bayes classifier,” in 2018 International conference on computational science and computational intelligence (CSCI), 2018, pp. 301–306.
C. Slamet, R. Andrian, D. S. Maylawati, W. Darmalaksana, and M. A. Ramdhani, “Web scraping and Naïve Bayes classification for job search engine,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 288, no. 1, p. 12038.
D. Berrar, “Bayes’ theorem and naive bayes classifier,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. January 2018, pp. 403–412, 2018, doi: 10.1016/B978-0-12-809633-8.20473-1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Irkhas Saputra, Mehtab Ali
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.